高斯是德國數(shù)學(xué)家,,也是科學(xué)家,他和牛頓,、阿基米德,,被譽為有史以來的三大數(shù)學(xué)家,。高斯是近代數(shù)學(xué)奠基者之一,在歷史上影響之大,,可以和阿基米德,、牛頓、歐拉并列,,有“數(shù)學(xué)王子”之稱,。
他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才。1795年進入格丁根大學(xué)學(xué)習(xí),。第二年他就發(fā)現(xiàn)正十七邊形的尺規(guī)作圖法,。并給出可用尺規(guī)作出的正多邊形的條件,解決了歐幾里得以來懸而未決的問題,。
高斯的數(shù)學(xué)研究幾乎遍及所有領(lǐng)域,,在數(shù)論、代數(shù)學(xué),、非歐幾何,、復(fù)變函數(shù)和微分幾何等方面都做出了開創(chuàng)性的貢獻。他還把數(shù)學(xué)應(yīng)用于天文學(xué),、大地測量學(xué)和磁學(xué)的研究,,發(fā)明了最小二乘法原理。高理的數(shù)論研究總結(jié)在《算術(shù)研究》(1801)中,,這本書奠定了近代數(shù)論的基礎(chǔ),,它不僅是數(shù)論方面的劃時代之作,也是數(shù)學(xué)史上不可多得的經(jīng)典著作之一,。高斯對代數(shù)學(xué)的重要貢獻是證明了代數(shù)基本定理,,他的存在性證明開創(chuàng)了數(shù)學(xué)研究的新途徑。高斯在1816年左右就得到非歐幾何的原理,。他還深入研究復(fù)變函數(shù),,建立了一些基本概念發(fā)現(xiàn)了著名的柯西積分定理。他還發(fā)現(xiàn)橢圓函數(shù)的雙周期性,,但這些工作在他生前都沒發(fā)表出來,。1828年高斯出版了《關(guān)于曲面的一般研究》,全面系統(tǒng)地闡述了空間曲面的微分幾何學(xué),,并提出內(nèi)蘊曲面理論,。高斯的曲面理論后來由黎曼發(fā)展。
高斯一生共發(fā)表155篇論文,,他對待學(xué)問十分嚴謹,,只是把他自己認為是十分成熟的作品發(fā)表出來。其著作還有《地磁概念》和《論與距離平方成反比的引力和斥力的普遍定律》等,。
高斯于1777年4月30日出生于不倫瑞克,。高斯是一對普通夫婦的兒子,。他的母親是一個貧窮石匠的女兒,雖然十分聰明,,但卻沒有接受過教育,,近似于文盲。在她成為高斯父親的第二個妻子之前,,她從事女傭工作,。他的父親曾做過園丁,工頭,,商人的助手和一個小保險公司的評估師,。他曾說,他能夠在腦袋中進行復(fù)雜的計算,。
小時候高斯家里很窮,,且他父親不認為學(xué)問有何用,但高斯依舊喜歡看書,,話說在小時候,,冬天吃完飯后他父親就會要他上床睡覺,以節(jié)省燃油,,但當他上床睡覺時,,他會將蕪菁的內(nèi)部挖空,,里面塞入棉布卷,,當成燈來使用,以繼續(xù)讀書,。
當高斯12歲時,,已經(jīng)開始懷疑元素幾何學(xué)中的基礎(chǔ)證明。當他16歲時,,預(yù)測在歐氏幾何之外必然會產(chǎn)生一門完全不同的幾何學(xué),,即非歐幾里得幾何學(xué)。他導(dǎo)出了二項式定理的一般形式,,將其成功的運用在無窮級數(shù),,并發(fā)展了數(shù)學(xué)分析的理論。
高斯的老師Bruettner與他助手 Martin Bartels很早就認識到了高斯在數(shù)學(xué)上異乎尋常的天賦,,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象,。于是他們從高斯14歲起便資助其學(xué)習(xí)與生活。這也使高斯能夠在公元1792-1795年在Carolinum學(xué)院(布倫瑞克工業(yè)大學(xué)的前身)學(xué)習(xí),。18歲時,,高斯轉(zhuǎn)入哥廷根大學(xué)學(xué)習(xí)。在他19歲時,,第一個成功的證明了正十七邊形可以用尺規(guī)作圖,。
高斯于公元1805年10月5日與來自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)結(jié)婚,。在公元1806年8月21日迎來了他生命中的第一個孩子喬瑟夫。此后,,他又有兩個孩子,。Wilhelmine(1809-1840)和Louis(1809-1810)。
1807年高斯成為哥廷根大學(xué)的教授和當?shù)靥煳呐_的臺長,。1833年高斯從他的天文臺拉了一條長八千尺的電線,,跨過許多人家的屋頂,一直到韋伯的實驗室,,以伏特電池為電源,,構(gòu)造了世界第一個電報機。
1849年舉辦了高斯獲博士學(xué)位50周年慶祝會,,為此高斯準備了他早期對代數(shù)基本定理證明的一個新版本,。由于健康狀況愈來愈差,這成了他最后的著作,。給他帶來最大歡樂和榮譽的還是哥廷根市贈與他的榮譽公民頭銜,。由于他在數(shù)學(xué)、天文學(xué),、大地測量學(xué)和物理學(xué)中的杰出研究成就,,他被選為許多科學(xué)院和學(xué)術(shù)團體的成員。他謝絕了許多大學(xué)請他當教授的邀請而一直留在哥廷根大學(xué)的院系中,,直至1855年2月23日逝世,。逝世后不久就鑄造了紀念他的錢幣。
《算術(shù)研究》,,1801年
《天體運動理論》,,1809年
《曲面的一般研究》,1827年
《高等大地測量學(xué)理論》上,,1843/44年
《高等大地測量學(xué)理論》下,,1846/47年
《地磁的一般理論》,1839年
《地磁概念》,,1840年
《論與距離平方成反比的引力和斥力的普遍定律》,,1840年
17歲的高斯發(fā)現(xiàn)了質(zhì)數(shù)分布定理和最小二乘法。通過對足夠多的測量數(shù)據(jù)的處理后,,可以得到一個新的,、概率性質(zhì)的測量結(jié)果。在這些基礎(chǔ)之上,,高斯隨后專注于曲面與曲線的計算,,并成功得到高斯鐘形曲線(正態(tài)分布曲線)。其函數(shù)被命名為標準正態(tài)分布(或高斯分布),,并在概率計算中大量使用,。
次年,,證明出僅用尺規(guī)便可以構(gòu)造出17邊形。并為流傳了2000年的歐氏幾何提供了自古希臘時代以來的第一次重要補充,。
高斯總結(jié)了復(fù)數(shù)的應(yīng)用,,并且嚴格證明了每一個n階的代數(shù)方程必有n個實數(shù)或者復(fù)數(shù)解。在他的第一本著名的著作《算術(shù)研究》中,,做出了二次互反律的證明,,成為數(shù)論繼續(xù)發(fā)展的重要基礎(chǔ)。在這部著作的第一章,,導(dǎo)出了三角形全等定理的概念,。
高斯在最小二乘法基礎(chǔ)上創(chuàng)立的測量平差理論的幫助下,測算天體的運行軌跡,。他用這種方法,,測算出了小行星谷神星的運行軌跡。
谷神星于1801年被意大利天文學(xué)家皮亞齊發(fā)現(xiàn),,但因病他耽誤了觀測,,從而失去了這顆小行星的軌跡。皮亞齊以希臘神話中的“豐收女神”(Ceres)對它命名,,稱為谷神星(Planetoiden Ceres),,并將自己以前觀測的數(shù)據(jù)發(fā)表出來,希望全球的天文學(xué)家一起尋找,。高斯通過以前3次的觀測數(shù)據(jù),,計算出了谷神星的運行軌跡。奧地利天文學(xué)家 Heinrich Olbers根據(jù)高斯計算出的軌道成功地發(fā)現(xiàn)了谷神星,。高斯將這種方法發(fā)表在其著作《天體運動論》(Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium)中,。
為了獲知每年復(fù)活節(jié)的日期,,高斯推導(dǎo)了復(fù)活節(jié)日期的計算公式,。
1818年至1826年間,高斯主導(dǎo)了漢諾威公國的大地測量工作,。通過最小二乘法為基礎(chǔ)的測量平差的方法和求解線性方程組的方法,,顯著地提高了測量的精度。
高斯親自參加野外測量工作,。他白天觀測,,夜晚計算。在五六年間,,經(jīng)他親自計算過的大地測量數(shù)據(jù)超過100萬個,。當高斯領(lǐng)導(dǎo)的三角測量外場觀測走上正軌后,高斯把主要精力轉(zhuǎn)移到處理觀測成果的計算上,,寫出了近20篇對現(xiàn)代大地測量學(xué)具有重大意義的論文,。在這些論文中,,他推導(dǎo)了由橢圓面向圓球面投影時的公式,并作出了詳細證明,。這個理論仍有應(yīng)用的價值,。
漢諾威公國的大地測量工作至1848年結(jié)束。這項大地測量史上的巨大工程,,如果沒有高斯在理論上的仔細推敲,,在觀測上力圖合理和精確,在數(shù)據(jù)處理上盡量周密和細致,,就不能圓滿的完成,。在當時的不發(fā)達的條件下,布設(shè)了大規(guī)模的大地控制網(wǎng),,精確地確定2578個三角點的大地坐標,。
為了用橢圓在球面上的正形投影理論解決大地測量中出現(xiàn)的問題,在這段時間內(nèi)高斯亦從事了曲面和投影理論的研究,,這項成果成為了微分幾何的重要理論基礎(chǔ),。他獨立地提出了不能證明歐氏幾何的平行公設(shè)具有‘物理的’必然性,至少不能用人類的理智給出這種證明,。但他的非歐幾何理論并未發(fā)表,。也許他是出于對同時代的人不能理解這種超常理論的擔憂。相對論證明了宇宙空間實際上是非歐幾何的空間,。高斯的思想被近100年后的物理學(xué)接受了,。
高斯試圖在漢諾威公國的大地測量中通過測量Harz的Brocken——Thuringer Wald的Inselsberg——哥廷根的Hohen Hagen三個山頭所構(gòu)成的三角形的內(nèi)角和,以驗證非歐幾何的正確性,,但未成功,。高斯的朋友鮑耶的兒子雅諾斯在1823年證明了非歐幾何的存在。高斯對他勇于探索的精神表示了贊揚,。1840年,,羅巴切夫斯基用德文寫了《平行線理論的幾何研究》一文。這篇論文的發(fā)表引起了高斯的注意,。他非常重視這一論證,,積極建議哥廷根大學(xué)聘請羅巴切夫斯基為通信院士。為了能直接閱讀他的著作,,從這一年開始,,63歲的高斯開始學(xué)習(xí)俄語,并最終掌握了這門外語,。高斯最終成為微分幾何的始祖(高斯,、雅諾斯和羅巴切夫斯基)之一。
出于對實際應(yīng)用的興趣,高斯發(fā)明了日光反射儀,。日光反射儀可以將光束反射至大約450公里外的地方,。高斯后來不止一次地為原先的設(shè)計作出改進,試制成功了后來被廣泛應(yīng)用于大地測量的鏡式六分儀,。
19世紀30年代,,高斯發(fā)明了磁強計。他辭去了天文臺的工作,,而轉(zhuǎn)向物理的研究,。他與韋伯(1804-1891)在電磁學(xué)領(lǐng)域共同工作。他比韋伯年長27歲,,以亦師亦友的身份與其合作,。1833年,通過受電磁影響的羅盤指針,,他向韋伯發(fā)送出電報,。這不僅是從韋伯的實驗室與天文臺之間的第一個電話電報系統(tǒng),也是世界第一個電話電報系統(tǒng),。盡管線路才8千米長,。
1840年,他和韋伯畫出了世界第一張地球磁場圖,,并且次年,,這些位置得到美國科學(xué)家的證實。
高斯在數(shù)個領(lǐng)域進行研究,,但只把他認為已經(jīng)成熟的理論發(fā)表出來,。他經(jīng)常對他的同事表示,該同事的結(jié)論已經(jīng)被自己以前證明過了,,只是因為基礎(chǔ)理論的不完備而沒有發(fā)表,。批評者說他這樣做是因為喜歡搶出風(fēng)頭。事實上高斯把他的研究結(jié)果都記錄起來了,。他死后,,他的20部紀錄著他的研究結(jié)果和想法的筆記被發(fā)現(xiàn),證明高斯所說的是事實,。一般人認為,,20部筆記并非高斯筆記的全部。
愛因斯坦曾評論說:“高斯對于近代物理學(xué)的發(fā)展,,尤其是對于相對論的數(shù)學(xué)基礎(chǔ)所作的貢獻(指曲面論),其重要性是超越一切,,無與倫比的,。”
貝爾曾經(jīng)這樣評論高斯:在高斯死后,人們才知道他早就預(yù)見一些十九世紀的數(shù)學(xué),,而且在1800年之前已經(jīng)期待它們的出現(xiàn),。如果他能把他所知道的一些東西泄漏,很可能比當今數(shù)學(xué)還要先進半個世紀或更多的時間,。